## The Cation-Cation Interactions in Aqueous Mixed Electrolyte Solutions of Quaternary Phosphonium Chlorides

Katsuko Такаіzuмі\* and Toshiki Wакавачаsні The College of General Education, Tohoku University, Kawauchi, Sendai 980 (Received September 20, 1982)

Density measurements were carried out at six temperatures between 1 and 55 °C for three series of aqueous mixed electrolyte solutions, each of which contained (n-Bu)<sub>4</sub>PCl and Ph<sub>4</sub>PCl with the mole ratios, 3:1, 1:1, and 1:3, respectively. The mixed solutions are assumed to be the model solutions of the phosphonium chlorides,  $(n-Bu)_{4-n}$  Ph<sub>n</sub>PCl(n=1,2, and 3), with respect to the pair-wise interactions between the cations, for which a model has been proposed in a previous paper.  $^{1)}$  The volume B-coefficients  $(B_{v})$  determined for the model salts are in good agreement with those for the corresponding pure salts and those reproduced by the equation derived from the model. The results indicate that the phenyl groups affect weakly the butyl cospheres in both the intermolecular processes and intramolecular processes and that among the ion-ion interactions the cation-cation interactions are the main factor for determining the  $B_{r}$ 's. These can be decomposed into three parts, arising from the butyl-butyl, phenyl-phenyl, and butyl-phenyl interactions.

In a previous paper<sup>1)</sup>, we reported the volume behavior of the quaternary phosphonium salts,  $(n-Bu)_{4-n}$   $Ph_nPCl(n=1-4)$  and  $Bu_4PBr$ , in aqueous solutions in the temperature range 1-55 °C. The volume B-coefficients  $(B_{\mathbf{v}})$ , which would reflect the effects arising from the pair-wise interactions between ions through the ionic cospheres,2) were determined. It was possible to reproduce the numerical values for  $B_{\nu}$  of the salts with n from 1 to 3 from those of the salts with n of 0 and 4 by the equation derived from these assumptions: (a) the  $B_{v}$ 's are determined mainly by the effects resulting from the cation-cation interactions; (b) when any two cations approach each other, the interaction takes place between a cosphere of one of the hydrocarbon groups on a cation and that on another cation, and we have three types of the interactions, butyl-butyl, phenyl-phenyl, and butylphenyl; (c) each interaction takes place on a purely chance basis, that is, in proportion to the 'concentration' of the group. If these assumptions are adequate, we may anticipate that, in the aqueous mixed electrolyte solutions containing (n-Bu)<sub>4</sub>PCl and Ph<sub>4</sub>PCl with the mole ratio, (4-n):n, the  $B_{v}$ 's found for the mixed salts(model salts) should be the same as those found for the pure salts.

In this paper, we report the volumetric properties of three kinds of model salts corresponding to the pure salts with  $n=1, 2, \text{ and } 3, \text{ respectively, and } (n-Bu)_4PCl$ in aqueous solutions at the temperatures 1, 5, 10, 25, 40, and 55 °C.

## **Experimental**

The (n-Bu)<sub>4</sub>PCl was obtained from Alfa Division Ventron and was purified as follows. The salt was dissolved in water, washed repeatedly with a small amount of CH2Cl2 to remove colored substances, extracted in the presence of NaCl(ca. 2 mol kg<sup>-1</sup>) into CHCl<sub>3</sub> phase, which was then washed with a small amount of deionized water, and finally extracted into conductivity-grade water. The aqueous solution was degassed to remove CHCl<sub>3</sub> at about 40 °C under reduced pressure and then filtered through a Millipore filter. The clathrate-like hydrate, obtained by cooling the aqueous solution, was collected. The aqueous solution was analyzed gravimetrically for the anion content using AgNO<sub>3</sub>. The methods for purifying the Ph<sub>4</sub>PCl and for preparing the

stock solution were the same as previously reported.1,3) Three kinds of mixed stock solutions were prepared by mixing both the stock solutions on a weight basis to give the mole ratios of Bu<sub>4</sub>PCl to Ph<sub>4</sub>PCl, 3:1, 1:1, and 1:3. The

solutions for density measurement were obtained by dilution from the mixed stock solutions on a weight basis.

General procedures and reproducibility for the density measurements were essentially the same as those reported previously.1,3) The measurements were carried out over the concentration range from about 0.04 to 1.5 mol dm<sup>-3</sup> for each series of the mixed solutions and at the temperatures, 1, 5, 10, 25, 40, and 55 °C. The temperatures of the water bath, in which the pycnometers were immersed, were controlled to 0.01 °C for the measurements at 1, 5, and 55 °C, 0.005 for 25 °C, and 0.007 for 10 and 40 °C.

## Results and Discussion

The apparent molar volumes,  $\phi_v$ , for the model salts corresponding to Bu<sub>3</sub>PhPCl, Bu<sub>2</sub>Ph<sub>2</sub>PCl and BuPh<sub>3</sub>PCl, at six temperatures are listed in Table 1. The  $\phi_{\mathbf{v}}$ 's for Bu<sub>4</sub>PCl, which had not been determined in the previous work,1) are also listed.

The  $\phi_{\mathbf{v}}$ 's were obtained from the density data by

the usual equation: 
$$\phi_{\rm v} = \frac{1}{m} \left( \frac{1000 + mM}{d_{\rm soln}} - \frac{1000}{d_{\rm o}} \right), \tag{1}$$

where m and M are the molality and molecular weight of the model salt which equals that of  $(n-Bu)_{4-n}Ph_nPCl$ . The  $\phi_{\mathbf{v}}$ 's are assumed to follow the equation;

$$\phi_{\nabla} = \phi_{\nabla}^{\circ} + A_{\nabla}c^{1/2} + B_{\nabla}c + C_{\nabla}c^{2} + D_{\nabla}c^{3}, \qquad (2)$$

where  $\phi^{\circ}$  is the standard partial molar volume of the model salt,  $A_{\nu}$  the Debye-Hückel limiting slope, and the other coefficients are empirical parameters. The values for  $A_{\nu}$  at various temperatures were taken from the table compiled by Redlich and Meyer.4) The other coefficients were determined by the least-squares method to fit the  $\phi_{\mathbf{v}}$ 's to the equation.

The numerical values for these coefficients are presented in Table 2, together with the uncertainties  $(\sigma_i)$ of the coefficients and the standard deviations  $(\sigma)$  between the observed and reproduced  $\phi_{\pi}$ 's. The corresponding coefficients for the pure salts are also listed, for comparison. The differences between  $\phi_{\pi}$ 's for Bu<sub>4</sub>PCl in this work and those in the previous work<sup>1)</sup>,

which were obtained from  $\phi_{\gamma}$ 's for Bu<sub>4</sub>PBr by subtracting the differences in the anionic partial molar volume,  $\phi_{\gamma,-}(Br^-)-\phi_{\gamma,-}(Cl^-)^3$ , are within 0.08% except for the difference at 1 °C, about 0.15% (Table 2).

Figure 1 shows the  $\phi_{\mathbf{v}}$ 's of the mixed salts as a func-

tion of the square root of concentration (mol dm<sup>-3</sup>), together with those of the pure salts. The  $\phi_{\tau}$  curves of the three mixed salts are very similar to those for the corresponding pure salts in the low concentration range, while at higher concentrations the similarity in the  $\phi_{\tau}$  behavior is not found. This aspect is re-

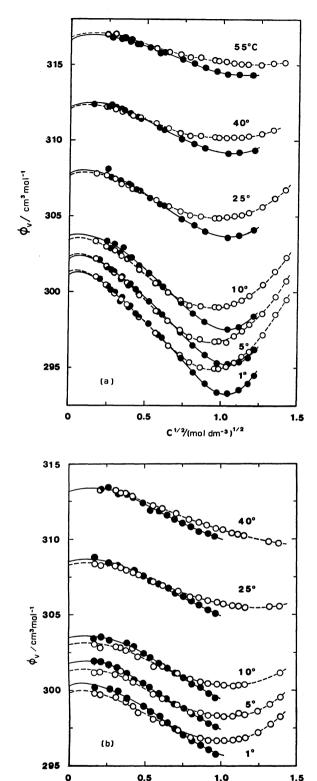
Table 1. Densities and apparent molar volumes at 1, 5, 10, 25, 40, and 55 °C

| 1 °C                |               |                                         | 5 °C                                    |                    | 10 °C              |                                         | 25 °C    |            | 40 °C                                   |                          | 55 °C            |                                      |
|---------------------|---------------|-----------------------------------------|-----------------------------------------|--------------------|--------------------|-----------------------------------------|----------|------------|-----------------------------------------|--------------------------|------------------|--------------------------------------|
| m                   | $\widehat{d}$ | $\phi_{\mathtt{v}}$                     | d                                       | $\phi_{	extsf{v}}$ | d                  | $\phi_{\mathbf{v}}$                     | ď        | $\phi_{v}$ | d                                       | $\phi_{\overline{\Psi}}$ | d                | $\overrightarrow{\phi_{\mathtt{v}}}$ |
| mol kg-1            |               | cm <sup>3</sup> mol-1                   |                                         | cm³ mol-1          | g cm <sup>-3</sup> |                                         |          | cm³ mol-1  |                                         | cm³ mol-1                |                  | n <sup>3</sup> mol -1                |
| Bu <sub>4</sub> PCl |               |                                         |                                         |                    |                    |                                         |          |            |                                         |                          |                  |                                      |
| 0.07122             | 0.999516      | 300.41                                  | 0.999490                                | 301.70             | 0.999109           | -                                       | 0.996270 | 306.98     | 0.991254                                | 311.27                   |                  |                                      |
| 0.07122             | 0.999499      | 299.95                                  | 0.999459                                |                    | 0.999056           | 300.09                                  | 0.550270 | 300.30     | 0.991121                                |                          |                  |                                      |
| 0.10424             | 0.999408      | 299.77                                  | 0.999364                                |                    | 0.998940           |                                         |          |            | 0.991121                                | 311.24                   |                  |                                      |
| 0.10424             | 0.999407      | 299.48                                  | 0.555304                                | 300.04             | 0.998914           |                                         | 0.995856 | 306.89     | 0.990770                                | 310.87                   | 0.983977         | 315.60                               |
| 0.11130             | 0.999324      | 299.31                                  | 0.999250                                | 300.35             | 0.998758           | 302.18                                  | 0.995661 |            | 0.990467                                |                          | 0.983613         | 315.56                               |
| 0.13681             | 0.999292      | 299.53                                  | 0.999196                                |                    | 0.998729           |                                         | 0.995649 |            | 0.990492                                |                          | 0.983646         | 315.24                               |
| 0.13531             | 0.999201      | 298.89                                  | 0.999050                                |                    | 0.998517           |                                         | 0.995253 |            | 0.989940                                |                          | 0.982972         | 315.17                               |
| 0.18330             | 0.999203      | 297.94                                  | 0.998962                                |                    | 0.998238           | 301.34                                  | 0.994837 |            | 0.989322                                |                          | 0.982186         | 314.92                               |
| 0.33982             | 0.999377      | 296.61                                  | 0.998991                                |                    | 0.998207           | 299.82                                  | 0.994324 |            | 0.988488                                |                          | 0.981103         | 314.54                               |
| 0.44143             | 0.999663      | 295.52                                  | 0.999131                                |                    | 0.998180           | 298.88                                  | 0.993879 |            | 0.987633                                |                          | 0.979988         | 314.29                               |
| 0.56538             | 1.00023       | 294.23                                  | 0.99950                                 | 295.86             | 0.99831            | 297.85                                  | 0.99340  | 303.36     | 0.98676                                 | 308.69                   | 0.978635         | 314.16                               |
| 0.69649             | 1.00025       | 293.09                                  | 0.99999                                 | 294.84             | 0.99856            | 296.94                                  | 0.99299  | 302.85     | 0.98587                                 | 308.43                   | 0.97746          | 313.95                               |
| 0.87027             | 1.00020       | 291.86                                  | 1.00074                                 | 293.78             | 0.99897            | 296.02                                  | 0.99250  | 302.39     | 0.98469                                 | 308.32                   | 0.97584          | 313.95                               |
| 1.1033              | 1.00337       | 290.76                                  | 1.00074                                 | 292.88             | 0.99936            | 295.38                                  | 0.99180  | 302.13     | 0.98330                                 | 308.18                   | 0.97386          | 313.97                               |
| 1.3962              | 1.00441       | 290.37                                  | 1.00104                                 | 292.61             | 0.99944            | 295.23                                  | 0.99075  | 302.21     | 0.98151                                 | 308.32                   | 0.97159          | 314.06                               |
| 1.7214              | 1.00463       | 290.79                                  | 1.00223                                 | 293.06             | 0.99887            | 295.70                                  | 0.98935  | 302.59     | 0.97959                                 | 308.57                   | 0.96933          | 314.16                               |
| 1.7214              | 1.00413       | 291.54                                  | 1.00200                                 | 293.74             | 0.99805            | 296.29                                  | 0.98812  | 303.02     | 0.97811                                 | 308.85                   | 0.96768          | 314.36                               |
| 1.9977              | 1.00413       | 291.60                                  | 1.00141                                 | 293.80             | 0.99798            | 296.35                                  | 0.98802  | 303.05     | 0.97787                                 | 308.96                   | 0.96731          | 314.50                               |
| 2.7220              | 1.00133       | 293.97                                  | 0.99850                                 | 295.86             | 0.99495            | 298.14                                  | 0.98449  | 304.23     | 0.97391                                 | 309.75                   | 0.96301          | 314.99                               |
| 3.5674              | 0.99763       | 296.22                                  | 0.99477                                 | 297.90             | 0.99117            | 299.92                                  | 0.98058  | 305.44     | 0.96986                                 | 310.57                   | 0.95881          | 315.53                               |
| 4.9556              | 0.99198       | 298.88                                  | 0.98917                                 | 300.32             | 0.98561            | 302.08                                  | 0.97509  | 306.97     | 0.96436                                 | 311.66                   | 0.95342          | 316.22                               |
| 6.8699              | 0.98587       | 301.18                                  | 0.98311                                 | 302.45             | 0.97968            | 303.98                                  | 0.96930  | 308.40     | 0.95879                                 | 312.68                   | 0.94798          | 316.94                               |
| 0.0055              | 0.3000.       | *************************************** | *************************************** |                    |                    | *************************************** | ••••     | *****      | • • • • • • • • • • • • • • • • • • • • |                          |                  |                                      |
|                     |               |                                         |                                         |                    | $Bu_4PCl$          | : Ph <sub>4</sub> PCl=                  | ·3:1     |            |                                         |                          |                  |                                      |
| 0.02319             |               |                                         |                                         |                    |                    |                                         |          |            | 0.992332                                | 312.37                   |                  |                                      |
| 0.04200             | 1.000481      | 300.85                                  | 1.000494                                | 302.10             |                    |                                         |          |            |                                         |                          |                  |                                      |
| 0.06409             | 1.000810      | 300.40                                  | 1.000800                                |                    | 1.000427           | 303.41                                  | 0.997525 | 308.17     | 0.992537                                | 312.21                   |                  |                                      |
| 0.07557             | 1.000993      | 300.10                                  | 1.000957                                |                    | 1.000591           | 302.91                                  | 0.997653 | 307.57     | 0.992581                                | 312.37                   | 0.98 <b>5890</b> | 316.74                               |
| 0.09173             | 1.001227      | 300.03                                  | 1.001172                                |                    | 1.000743           | 303.28                                  |          |            | 0.992664                                | 312.28                   |                  |                                      |
| 0.11519             | 1.001634      | 299.32                                  | 1.001541                                |                    | 1.001079           | 302.57                                  | 0.997983 | 307.37     | 0.992793                                | 312.10                   | 0.986001         | 316.63                               |
| 0.12982             | 1.001791      | 299.76                                  | 1.001684                                |                    | 1.001196           | 302.99                                  |          |            | 0.992865                                | 312.08                   | 0.986013         | 316.83                               |
| 0.16125             | 1.002341      | 299.03                                  | 1.002187                                | 300.44             | 1.001655           |                                         | 0.998372 | 307.14     | 0.993048                                | 311.86                   | 0.986137         | 316.49                               |
| 0.17171             | 1.002484      | 299.08                                  | 1.002304                                | 300.55             | 1.001774           |                                         | 0.998460 | 307.10     |                                         |                          | 0.986139         | 316.65                               |
| 0.20487             | 1.003050      | 298.58                                  | 1.002797                                |                    |                    |                                         | 0.998777 | 306.78     | 0.993310                                | 311.59                   | 0.986277         | 316.34                               |
| 0.22660             | 1.003422      | 298.30                                  | 1.003136                                | 299.94             | 1.002483           | 301.84                                  | 0.998962 | 306.72     | 0.993452                                | 311.43                   | 0.986333         | 316.35                               |
| 0.29929             | 1.004552      | 297.97                                  | 1.004201                                | 299.46             | 1.003451           | 301.30                                  | 0.999657 | 306.24     |                                         |                          | 0.986588         | 316.09                               |
| 0.38903             | 1.00608       | 297.17                                  | 1.00560                                 | 298.71             | 1.00469            | 300.63                                  | 1.00055  | 305.69     | 0.99447                                 | 310.77                   | 0.98692          | 315.81                               |
| 0.42806             | 1.00670       | 297.00                                  | 1.00617                                 | 298.53             | 1.00522            | 300.41                                  | 1.00086  | 305.68     | 0.99470                                 | 310.67                   | 0.98703          | 315.82                               |
| 0.64842             | 1.01041       | 295.58                                  | 1.00955                                 | 297.25             | 1.00821            | 299.29                                  | 1.00296  | 304.83     | 0.99609                                 | 310.06                   | 0.98786          | 315.32                               |
| 0.83176             | 1.01343       | 294.65                                  | 1.01229                                 | 296.41             | 1.01063            | 298.55                                  | 1.00461  | 304.35     | 0.99718                                 | 309.73                   | 0.98853          | 315.03                               |
| 1.0399              | 1.01662       | 293.91                                  | 1.01515                                 | 295.79             | 1.01314            | 298.03                                  | 1.00635  | 303.98     | 0.99833                                 | 309.47                   | 0.98927          | 314.77                               |
| 1.3040              | 1.02021       | 293.37                                  | 1.01840                                 | 295.30             |                    |                                         |          |            |                                         |                          | 0.99011          | 314.55                               |
| 1.5986              | 1.02344       | 293.27                                  | 1.02133                                 | 295.22             | 1.01857            | 297.54                                  | 1.01005  | 303.66     | 1.00087                                 | 309.15                   | 0.99096          | 314.38                               |
| 1.9856              | 1.02676       | 293.50                                  | 1.02437                                 | 295.39             | 1.02129            | 297.67                                  | 1.01190  | 303.76     | 1.00213                                 | 309.19                   | 0.99175          | 314.38                               |
| 2.3424              | 1.02902       | 293.91                                  | 1.02663                                 | 295.62             |                    |                                         |          |            |                                         |                          |                  |                                      |
| 2.6466              | 1.03028       | 294.48                                  | 1.02766                                 | 296.22             | 1.02420            | 298.40                                  | 1.01413  | 304.10     | 1.00373                                 | 309.34                   | 0.99294          | 314.32                               |

Table 1. (Continued)

| 1 °C                   |          | 5 °C                |          | 10 °C      |          | 25 °C               |          | 40 °C              |          | 55 °C         |         |                                   |
|------------------------|----------|---------------------|----------|------------|----------|---------------------|----------|--------------------|----------|---------------|---------|-----------------------------------|
| m                      | d        | $\phi_{\mathtt{v}}$ | d        | $\phi_{v}$ | d        | $\phi_{\mathtt{v}}$ | d        | $\phi_{	extsf{v}}$ | d        | $\phi_{ m v}$ | d       | $\phi_{\Psi}$                     |
| mol kg-1               |          | cm³ mol-1           | g cm -3  | cm³ mol-1  | g cm-3   |                     | g cm-s   | cm³ mol-1          | g cm-3   |               | g cm-3  | cm <sup>8</sup> mol <sup>-1</sup> |
| $Bu_4PCl: Ph_4PCl=1:1$ |          |                     |          |            |          |                     |          |                    |          |               |         |                                   |
| 0.02982                | 1.000923 | 300.23              | 1.000940 | 301.83     | 1.000632 | 303.41              | 0.997847 | 308.63             |          |               |         |                                   |
| 0.04716                |          |                     |          |            |          |                     |          |                    | 0.993331 | 313.19        |         |                                   |
| 0.07444                | 1.002433 | 300.10              | 1.002380 | 301.58     | 1.002002 | 303.33              | 0.999030 | 308.46             | 0.993966 | 313.11        |         |                                   |
| 0.11010                | 1.003627 | 299.92              |          |            |          |                     | 0.999965 | 308.30             | 0.994790 | 312.97        |         |                                   |
| 0.15604                | 1.005179 | 299.48              | 1.004994 | 301.13     | 1.004441 | 303.13              |          |                    | 0.995839 | 312.79        |         |                                   |
| 0.19901                |          |                     |          |            | 1.005735 | 302.80              | 1.002257 | 307.92             | 0.996801 | 312.67        |         |                                   |
| 0.26090                | 1.008590 | 298.99              | 1.008286 | 300.48     | 1.007553 | 302.48              | 1.003837 | 307.59             | 0.998190 | 312.37        |         |                                   |
| 0.31829                | 1.010436 | 298.64              | 1.010037 | 300.21     | 1.009219 | 302.17              |          |                    |          |               |         |                                   |
| 0.39960                | 1.01296  | 298.31              | 1.01247  | 299.82     | 1.01152  | 301.80              | 1.00725  | 307.04             | 1.001210 | 311.81        |         |                                   |
| 0.48275                | 1.01553  | 297.87              | 1.01491  | 299.44     | 1.01382  | 301.44              | 1.00922  | 306.75             | 1.00294  | 311.57        |         |                                   |
| 0.57470                | 1.01828  | 297.45              | 1.01754  | 299.04     | 1.01630  | 301.06              | 1.01137  | 306.38             | 1.00481  | 311.29        |         |                                   |
| 0.68911                | 1.02157  | 297.01              | 1.02059  | 298.78     | 1.01922  | 300.75              | 1.01386  | 306.15             | 1.00701  | 311.06        |         |                                   |
| 0.81612                | 1.02503  | 296.64              | 1.02395  | 298.33     | 1.02237  | 300.36              | 1.01654  | 305.85             | 1.00934  | 310.82        |         |                                   |
| 0.96052                | 1.02869  | 296.39              | 1.02743  | 298.10     | 1.02566  | 300.13              | 1.01944  | 305.55             | 1.01194  | 310.47        |         |                                   |
| 1.1356                 | 1.03294  | 296.01              | 1.03148  | 297.74     | 1.02951  | 299.77              | 1.02268  | 305.30             | 1.01474  | 310.30        |         |                                   |
| 1.2951                 | 1.03659  | 295.72              | 1.03493  | 297.48     | 1.03281  | 299.47              | 1.02552  | 305.04             | 1.01727  | 310.02        |         |                                   |
|                        |          |                     |          |            | Ru.PC    | l : Ph₄PCl=         | =1.3     |                    |          | •             |         |                                   |
| 0.04355                |          |                     |          |            | Build    | r r r rigi Gi-      | -1.5     |                    |          |               |         |                                   |
| 0.04255                |          |                     | 1 000000 | 201 00     |          | ***                 |          |                    |          |               |         |                                   |
| 0.04262<br>0.06785     |          |                     | 1.002220 | 301.06     | 1.001874 | 303.28              | 0.999025 | 308.62             | 0.005110 | 212 45        | 0 00035 | 4 210 02                          |
| 0.00783                |          |                     |          |            | 1 002512 | 303.14              | 1 000510 | 308.60             | 0.995110 | 313.45        | 0.98835 | 4 318.82                          |
| 0.07330                | 1.005204 | 299.37              |          |            | 1.003513 | 303.14              | 1.000510 | 300.00             | 0.996360 | 313.58        | 0.98953 | 3 318.63                          |
| 0.13221                | 1.007008 |                     | 1.005110 | 300.95     |          |                     | 1.003020 | 308.59             | 0.997801 |               | 0.90933 | 310.03                            |
| 0.13782                | 1.007289 |                     | 1.003110 | 300.33     | 1.006564 | 303.05              | 1.003020 | , 300.33           | 0.997937 |               | 0.99100 | 1 318.65                          |
| 0.17833                | 1.009342 |                     | 1.007080 | 301.05     | 1.008474 | 303.08              | 1.005065 | 308.20             | 0.557557 | 313.70        | 0.99253 |                                   |
| 0.18433                | 1.009686 |                     | 1.009121 | 300.76     | 1.008809 | 302.76              | 1.005288 |                    | 0.999835 | 313.27        | 0.99275 |                                   |
| 0.23004                | 1.011970 |                     | 1.009462 |            | 1.010931 | 302.70              | 1.003233 |                    | 0.555055 | 313.27        | 0.33273 | 310.30                            |
| 0.23634                |          |                     | 1.011664 |            | 1.011238 | 302.62              | 1.007523 |                    | 1.001903 | 312,97        | 0.99471 | 2 317.84                          |
| 0.28033                | 1.014379 | 298.90              |          |            | 1.013178 | 302.78              | 1.009354 |                    | 11001500 | 012101        | 0000172 |                                   |
| 0.29739                | 1.01524  | 298.71              | 1.014023 | 300.48     | 1.01403  | 302.42              | 1.01011  | 307.71             | 1.00429  | 312.60        | 0.99694 | 317.47                            |
| 0.35497                | 1.01792  | 298 <b>.73</b>      |          |            | 1.01654  | 302.41              |          |                    |          |               |         |                                   |
| 0.36488                | 1.01843  | 298.57              | 1.01744  | 300.38     | 1.01701  | 302.25              | 1.01284  | 307.49             | 1.00686  | 312.29        | 0.99925 | 317.41                            |
| 0.44308                | 1.02206  | 298.25              | 1.01793  | 300.23     | 1.02040  | 301.96              | 1.01591  | 307.28             | 1.00970  | 312.08        | 1.00197 | 316.97                            |
| 0.53283                | 1.02597  | 298.18              | 1.02140  | 300.05     | 1.02411  | 301.77              | 1.01928  | 307.09             | 1.01282  | 311.89        | 1.00495 | 316.63                            |
| 0.62536                | 1.02997  | 297.85              | 1.02524  | 299.84     | 1.02785  | 301.43              | 1.02268  | 306.79             | 1.01597  | 311.60        | 1.00787 | 316.40                            |
| 0.73763                | 1.03450  | 297.68              | 1.02913  | 299.49     | 1.03208  | 301.28              | 1.02656  | 306.59             | 1.01959  | 311.37        | 1.01130 | 316.07                            |
| 0.85839                | 1.03921  | 297.40              | 1.03348  | 299.39     | 1.03652  | 300.96              | 1.03063  | 306.24             | 1.02342  | 310.94        | 1.01486 | 315.71                            |
| 1.00515                | 1.04444  | 297.32              | 1.03808  | 299.06     |          |                     |          |                    | 1.02764  | 310.75        |         |                                   |
|                        |          |                     |          |            |          |                     |          |                    |          |               |         |                                   |

flected in the agreement of the  $B_{\rm v}$  value for the mixed salts with that for the pure salts (Fig. 2 and Table 2). This may be an important clue for interpreting the physical meaning of the  $B_{\rm v}$ 's obtained as empirical parameters. Before discussing the subject, we note that the  $B_{\rm v}$  value is very close to half of  $B_{\rm 2v}$  which is the coefficient of the linear term of c in the equation for the partial molar volume. Some discussion about  $B_{\rm v}$  will follow.


For dilute solutions, we may reasonably expect that, besides the long-range interactions among ions due to the coulombic force, there may be pairwise inter-

actions between ions at short distances originating from various kinds of potentials. (The potentials other than the coulombic one used by Friedman and coworkers<sup>7,8</sup>) are the following; the core repulsion potential, the potential of the ion-cavity interaction between two ions, and the Gurney potential representing the effect of the overlap of the cospheres when the ions come close together. The  $B_{\rm v}$  coefficient would contain the contributions derived from all these potentials.) The agreement in  $B_{\rm v}$ , therefore, suggests strongly that in any given mixed system at low concentrations the ion-ion interactions would take place in a way similar

Table 2. Standard partial molar volumes and coefficients for Eq. 2

| t                                    | φ°,                                          |                                             | $B_{	extsf{v}}$      |                                                               | $G_{f v}$                                                     |                                                               | $D_{	extsf{v}}$             |                                             |                     |  |  |  |
|--------------------------------------|----------------------------------------------|---------------------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|---------------------------------------------|---------------------|--|--|--|
| °C                                   | cm³ mol-1                                    | $\sigma_{\phi}$                             | $cm^3 mol^{-2} dm^3$ | $\sigma_{\mathrm{B}}$                                         | cm³ mol-3 dm6                                                 | $\sigma_{\mathrm{C}}$                                         | cm³ mol-4 dm9               | $\sigma_{ m D}$                             | σ                   |  |  |  |
| $\mathrm{Bu_4PCl^a}$                 |                                              |                                             |                      |                                                               |                                                               |                                                               |                             |                                             |                     |  |  |  |
| 1                                    | 302.10<br>(309.13)<br>(302.54) <sup>b)</sup> | 0.27<br>0.18                                | $-26.89 \\ -25.48$   | 1.43<br>0.79                                                  | 16.78<br>17.60                                                | 1.62<br>0.86                                                  | $-2.36 \\ -3.01$            | $\begin{array}{c} 0.48 \\ 0.24 \end{array}$ | 0.48<br>0.31)       |  |  |  |
| 5                                    | 303.13<br>(310.00<br>(303.34) <sup>b)</sup>  | 0.24<br>0.15                                | $-25.25 \\ -23.72$   | 1.18<br>0.63                                                  | 16.22<br>16.90                                                | 1.33<br>0.67                                                  | $-2.43 \\ -3.00$            | 0.40<br>0.19                                | 0.38<br>0.27)       |  |  |  |
| 10                                   | 304.59<br>(311.14<br>(304.40)b)              | 0.18<br>0.14                                | $-23.85 \\ -21.21$   | 0.93<br>0.56                                                  | 15.87<br>15.24                                                | 1.05<br>0.58                                                  | $\substack{-2.57 \\ -2.74}$ | 0.32<br>0.16                                | 0.30<br>0.22)       |  |  |  |
| 25                                   | 307.59<br>(314.81<br>(307.83) <sup>b)</sup>  | 0.14<br>0.06                                | $-16.71 \\ -15.44$   | $\begin{array}{c} 0.72 \\ 0.24 \end{array}$                   | 11.64<br>11.55                                                | 0.82<br>0.26                                                  | $-2.02 \\ -2.20$            | 0.25<br>0.07                                | 0.23<br>0.10)       |  |  |  |
| 40                                   | 311.48<br>(318.80<br>(311.59) <sup>b)</sup>  | 0.05<br>0.10                                | $-12.85 \\ -11.43$   | 0.23<br>0.39                                                  | 9.34<br>8.64                                                  | $\begin{array}{c} 0.27 \\ 0.41 \end{array}$                   | $-1.78 \\ -1.71$            | 0.08<br>0.11                                | 0.07<br>0.15)       |  |  |  |
| 55                                   | 315.61<br>(323.12<br>(315.69) <sup>b)</sup>  | 0.08<br>0.06                                | $-9.45 \\ -8.19$     | $\begin{array}{c} 0.37 \\ 0.24 \end{array}$                   | 6.77<br>5.82                                                  | $\begin{array}{c} 0.42 \\ 0.26 \end{array}$                   | $-1.34 \\ -1.15$            | 0.13<br>0.07                                | 0.10<br>0.09)       |  |  |  |
| $Bu_{4}PCl: Ph_{4}PCl = 3:1^{\circ}$ |                                              |                                             |                      |                                                               |                                                               |                                                               |                             |                                             |                     |  |  |  |
| 1                                    | 300.92<br>(301.32                            | $\begin{array}{c} 0.08 \\ 0.09 \end{array}$ | -15.89 $-19.28$      | $\begin{array}{c} 0.34 \\ 0.53 \end{array}$                   | $\substack{6.92\\14.20}$                                      | $\begin{array}{c} 0.23 \\ 0.67 \end{array}$                   | -2.80                       | 0.22                                        | 0.18<br>0.16)       |  |  |  |
| 5                                    | 302.13<br>(302.34                            | $\begin{array}{c} 0.06 \\ 0.06 \end{array}$ | $-14.68 \\ -17.45$   | $\begin{array}{c} 0.26 \\ 0.34 \end{array}$                   | 6.32<br>12.79                                                 | $\begin{array}{c} \textbf{0.18} \\ \textbf{0.43} \end{array}$ | -2.53                       | 0.14                                        | 0.14<br>0.10)       |  |  |  |
| 10                                   | 303.72<br>(303.45                            | $\begin{array}{c} 0.08 \\ 0.06 \end{array}$ | $-13.62 \\ -14.61$   | $\begin{array}{c} 0.34 \\ 0.36 \end{array}$                   | 5.88<br>10.54                                                 | $\begin{array}{c} 0.23 \\ 0.45 \end{array}$                   | -2.08                       | 0.15                                        | 0.15<br>0.10)       |  |  |  |
| 25                                   | 307.84<br>(307.77                            | $\begin{array}{c} 0.04 \\ 0.05 \end{array}$ | -10.44 $-10.52$      | $\begin{array}{c} 0.17 \\ 0.28 \end{array}$                   | 4.37<br>7.08                                                  | $0.12 \\ 0.35$                                                | -1.38                       | 0.12                                        | 0.07<br>0.09)       |  |  |  |
| 40                                   | 312.29<br>(312.08                            | $\begin{array}{c} 0.05 \\ 0.05 \end{array}$ | $-8.90 \\ -8.22$     | $\begin{array}{c} 0.24 \\ 0.26 \end{array}$                   | $\begin{array}{c} 3.56 \\ 5.19 \end{array}$                   | $\begin{array}{c} 0.15 \\ 0.32 \end{array}$                   | -1.06                       | 0.11                                        | 0.10<br>0.07)       |  |  |  |
| 55                                   | 316.60<br>(316.81                            | $\begin{array}{c} 0.05 \\ 0.07 \end{array}$ | $-7.00 \\ -7.57$     | $\begin{array}{c} 0.19 \\ 0.38 \end{array}$                   | $\begin{array}{c} 2.38 \\ 4.51 \end{array}$                   | $\begin{array}{c} 0.14 \\ 0.46 \end{array}$                   | -1.01                       | 0.15                                        | 0.08<br>0.10)       |  |  |  |
|                                      |                                              |                                             | $\mathrm{Bu}_4$      | PCl : P                                                       | $\mathbf{h_4PCl} = 1:1^{\mathrm{d}}$                          |                                                               |                             |                                             |                     |  |  |  |
| 1                                    | 300.34<br>(299.84                            | $\begin{array}{c} 0.04 \\ 0.04 \end{array}$ | $-9.50 \\ -9.82$     | $\begin{array}{c} 0.22 \\ 0.23 \end{array}$                   | 3.28<br>6.23                                                  | $\begin{array}{c} 0.22 \\ 0.30 \end{array}$                   | -1.10                       | 0.10                                        | 0.06<br>0.07)       |  |  |  |
| 5                                    | 301.84<br>(301.30                            | $\begin{array}{c} 0.07 \\ 0.10 \end{array}$ | $-9.49 \\ -9.23$     | $\begin{array}{c} 0.28 \\ 0.60 \end{array}$                   | 3.51<br>5.67                                                  | $\begin{array}{c} 0.26 \\ 0.77 \end{array}$                   | -1.01                       | 0.26                                        | 0.05<br>0.14)       |  |  |  |
| 10                                   | 303.52<br>(303.04                            | $\begin{array}{c} 0.06 \\ 0.09 \end{array}$ | $-8.43 \\ -8.08$     | $\begin{array}{c} 0.31 \\ 0.52 \end{array}$                   | 2.60<br>4.43                                                  | $\begin{array}{c} 0.32 \\ 0.35 \end{array}$                   | -0.70                       | 0.23                                        | $0.08 \\ 0.14)$     |  |  |  |
| 25                                   | 308.55<br>(308.26                            | $\begin{array}{c} 0.07 \\ 0.04 \end{array}$ | $-8.42 \\ -7.87$     | $\begin{array}{c} 0.28 \\ 0.26 \end{array}$                   | 2.95<br>4.35                                                  | $\substack{0.25\\0.35}$                                       | -0.88                       | 0.10                                        | 0.04<br>0.07)       |  |  |  |
| 40                                   | 313.10<br>(313.14                            | $\begin{array}{c} 0.03 \\ 0.08 \end{array}$ | $-8.08 \\ -7.66$     | 0.16<br>0.48                                                  | 2.79<br>3.88                                                  | $\begin{array}{c} 0.17 \\ 0.63 \end{array}$                   | -0.85                       | 0.22                                        | 0.04<br>0.12)       |  |  |  |
|                                      |                                              |                                             | Bu₄                  | PCl : P                                                       | $h_4PCl = 1:3^{e}$                                            |                                                               |                             |                                             |                     |  |  |  |
| 1                                    | 299.24<br>(299.51                            | $\begin{array}{c} 0.11 \\ 0.07 \end{array}$ | $-5.00 \\ -5.44$     | $\begin{array}{c} 0.64 \\ 0.31 \end{array}$                   | $\begin{array}{c} \textbf{0.97} \\ \textbf{2.05} \end{array}$ | $\begin{array}{c} 0.75 \\ 0.26 \end{array}$                   |                             |                                             | 0.11<br>0.11)       |  |  |  |
| 5                                    | 301.00<br>(301.17                            | $\begin{array}{c} 0.08 \\ 0.08 \end{array}$ | -5.20 $-5.53$        | 0.50<br>0.36                                                  | 0.91<br>1.94                                                  | $\begin{array}{c} 0.71 \\ 0.30 \end{array}$                   |                             |                                             | 0.09<br>0.13)       |  |  |  |
| 10                                   | 303.12<br>(303.04                            | 0.06<br>0.07                                | $-5.25 \\ -5.17$     | 0.16<br>0.30                                                  | 1.52                                                          | 0.25                                                          |                             |                                             | $0.11^{'} \\ 0.11)$ |  |  |  |
| 25                                   | 308.48<br>(308.48                            | 0.06<br>0.06                                | $-5.74 \\ -5.81$     | 0.16<br>0.25                                                  | 1.45                                                          | 0.21                                                          |                             |                                             | 0.11<br>0.09)       |  |  |  |
| 40                                   | 313.48<br>(313.73                            | 0.11<br>0.05                                | $-6.43 \\ -7.08$     | 0.28<br>0.23                                                  | 1.78                                                          | 0.19                                                          |                             |                                             | 0.22<br>0.08)       |  |  |  |
| 55                                   | 318.53<br>(318.86                            | $\begin{array}{c} 0.09 \\ 0.06 \end{array}$ | $-7.53 \\ -8.58$     | $\begin{array}{c} \textbf{0.26} \\ \textbf{0.29} \end{array}$ | 2.26                                                          | 0.25                                                          |                             |                                             | 0.17<br>0.10)       |  |  |  |

a) The bracketed values are for  $Bu_4PBr$ , taken from Ref. 1. b) The values converted into  $\phi^{\bullet}(Bu_4PCl)$  from  $\phi^{\bullet}(Bu_4PBr)$  by subtracting  $(\overline{V}^{\bullet}(Br^{-}) - \overline{V}^{\bullet}(Cl^{-}))$ ; cf. Ref. 3. c) The bracketed values are for  $Bu_3PhPCl$ , taken from Ref. 1. d) The bracketed values are for  $Bu_2Ph_2PCl$ , taken from Ref. 1. e) The bracketed values are for  $Bu_2Ph_3PCl$ , taken from Ref. 1.



to those in the corresponding pure system. Since the actual species in the mixed systems are quite different from those in the pure systems, we should obtain  $B_{\nu}$  values for the mixed systems different from those for the pure systems, if the  $B_{\rm v}$ 's determined from experimental data reflect significantly the effects from short-range interactions among more than two ions, and if the states of cosphere water around a group,

 $C^{1/2}$  / (mol dm<sup>-3</sup>) $^{1/2}$ 

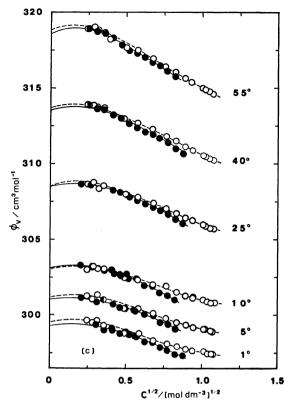



Fig. 1. Comparison of  $\phi_{\mathbf{v}}$ 's for the model salts with those for the pure ralts. Model salt; — ● —. Pure salt; -- ○ --. (a) 3:1 model salt and Bu<sub>3</sub>PhPCl, (b) 1:1 model salts and Bu<sub>2</sub>Ph<sub>2</sub>PCl, (c) 1:3 model salt and BuPh<sub>3</sub>PCl.

say, butyl (or phenyl) group on the cations with n from 1 to 3 differ considerably from those around the butyl(or phenyl) groups on the Bu<sub>4</sub>P<sup>+</sup>(or Ph<sub>4</sub>P<sup>+</sup>) ion. Thus we may conclude that the present  $B_{\mathbf{v}}$ 's reflect mainly pairwise interactions between ions: ++, +-, and --, and that the cosphere around a group on the cations (n=1-3) is affected weakly by the unlike groups, as concluded in previous papers. 1,18)

There are indications that the cation-cation interactions are the dominant contribution to the excess volumes of some salts containing large-sized organic cations. As may be seen from Table 2, the concentration dependence of  $\phi_{\pi}$  of Bu<sub>4</sub>PCl at all temperatures examined is very similar to that of Bu<sub>4</sub>PBr; the differences between their  $B_{\nu}$ 's are only around 10% and the higher coefficients,  $C_{v}$  and  $D_{v}$ , are in agreement within the experimental uncertainties. If the cationanion interactions contribute largely to the excess volume, different results would have been obtained because the two anions are known to affect the water structures differently. The situation is similar for the cations containing phenyl groups: the  $B_{v}$  values at 25 °C of Bu<sub>3</sub>PhPCl and Bu<sub>3</sub>PhPBr are  $-10.5(\pm .28)$  and  $-11(\pm .4)$ , and those of Bu<sub>2</sub>Ph<sub>2</sub>PCl and Bu<sub>2</sub>Ph<sub>2</sub>PBr,  $-7.87(\pm .26)$  and  $-7(\pm .5)$  cm<sup>3</sup> mol<sup>-2</sup> dm<sup>3</sup>, respectively.<sup>1,3</sup>) Volume behavior peculiar to the hydrophobic salts such as  $n\text{-Bu}_4\text{NX}^{5,6}$ ) and (n- $Bu)_3N(CH_2)_8N(n-Bu)_3Br_2^{16}$  in aqueous solutions has been interpreted in terms of the clathrate-like model

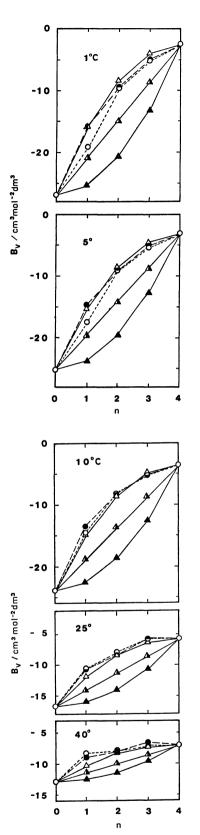



Fig. 2. Comparison of the  $B_{\mathbf{v}}$ -coefficients. Observed  $B_{\mathbf{v}}$ ; model salt: ————, pure salt: ————, Calculated  $B_{\mathbf{v}}$ ; Case 1; ———, Case 2; ———, Case 3; ———.

of hydration, in which the cation-cation pairing through water sheath were assumed to be the dominant effect in determining their volume behavior. The results of a model calculation for tetraalkylammonium halides (R<sub>4</sub>NX) by Streng and Wen<sup>9,10)</sup> shows that, of the three excess volume parameters,  $V_{++}$ ,  $V_{+-}$ , and  $V_{--}$ ,  $V_{++}$  is negative and several times larger in magnitude than  $V_{+-}$  for higher three cations(from R=ethyl to n-butyl) but is comparable with tetramethylammonium halides, in the calculation  $V_{-}$  was assumed to be zero and the anions were the Cl<sup>-</sup> and Br<sup>-</sup> ions. One reason for these observations is suggested by the cosphere overlap model: the contribution to the excess volume from cosphere overlapping depends on the  $volume(V_{mu})$  of the cosphere-overlap region, from which the cosphere material(water) relaxes to the bulk water. This process results in volume changes of the system caused by the change of the state of water, both in the cosphere region shared by the two ions and in the relaxing part. The  $V_{\rm mu}$  is reasonably expected to become increasingly larger as the size of the participant ions increases.

From the above, we assume that the  $B_{\rm v}$  obtained here reflect all the effects resulting from the pairwise interactions between cations. This is of course an oversimplified interpretation for  $B_{\rm v}$ , but is a first step in approaching the volumetric properties of the salts which contain large-sized ions. For a nonelectrolyte solute, the  $B_{\rm v}$  coefficient may have a more distinct meaning,<sup>2)</sup> that is, it may be correlated with the pressure derivative of the pair interaction coefficient in the virial-type expression for the chemical potential of the solute.

Based on this assumption, a further analysis for  $B_{\rm v}$  is possible. In a given mixed system, there happen three types of cation-cation interactions:  ${\rm Bu_4P^+-Bu_4P^+}$ ,  ${\rm Ph_4P^+-Ph_4P^+}$ , and  ${\rm Bu_4P^+-Ph_4P^+}$ . Since the present cations have nearly the same molar volume and are roughly spherical in shape, we assume approximately that a given cation i would encounter another cation j at a short distance, where the cosphere overlap takes place(cation pairing), with a relative probability proportional only to the number density of species j. <sup>17)</sup> Thus, for the mixed system containing  ${\rm Bu_4PCl}$  and  ${\rm Ph_4PCl}$  with the mole ratio, (4-n):n, we can express a conditional probability  $P_{1,j}(n)$ , with which we find the cations i and j in a cation pair, by the equation:

$$\begin{split} P_{\mathrm{BB}}(n) &= \left(\frac{4-n}{4}\right)^2, \ P_{\mathrm{PP}}(n) &= \left(\frac{n}{4}\right)^2, \\ P_{\mathrm{BP}}(n) &= 2\left(\frac{4-n}{4}\right)\left(\frac{n}{4}\right), \end{split} \tag{3}$$

where the subscripts B and P stand for the cations  $Bu_4P^+$  and  $Ph_4P^+$ , respectively. The  $B_v(n)$ , the  $B_v$  coefficient expected for the mixed system, therefore, can be given by

$$B_{\rm v}(n) = B_{\rm v}(0) P_{\rm BB}(n) + B_{\rm v}(4) P_{\rm PP}(n) + b P_{\rm BP}(n)$$
, (4) where  $B_{\rm v}(0)$  and  $B_{\rm v}(4)$  are the observed  $B_{\rm v}$ 's for Bu<sub>4</sub>PCl and Ph<sub>4</sub>PCl in each pure solution, respectively. Here,  $b$  is the volume contribution from pairwise interactions between the unlike cations. The  $b$  value is unknown and three limiting cases are examined.

1)  $b=[B_{\rm v}(0)+B_{\rm v}(4)]/2$ , 2)  $b=B_{\rm v}(4)$ , and 3)  $b=B_{\rm v}(0)$ . In Fig. 2, the limiting cases are compared together with the observed  $B_{\rm v}$ 's.<sup>14</sup>) Clearly, case 2 is most suitable throughout these n values and temperatures. In terms of the cosphere overlap model, case 2 means that when unlike two cations interact at a short distance, a part of the cosphere water around a phenyl group relaxes to the bulk water in a way similar to the case of the  $\mathrm{Ph_4P+Ph_4P+}$  interaction, while the butyl cosphere is maintained.

Equation 4 is quite the same as that for the pure systems, if we read the subscripts B and P as the butyl and phenyl group and  $P_{ij}(n)$  as the conditional probability with which we find group i and j in a cation pair(two like cations containing n phenyl groups). This is the reason for examining the present systems as the model systems for the aqueous solutions of the  $Bu_{4-n}Ph_nPCl$  salts.

In essence, Eq. 4 is derived by neglecting the effects arising from the coulombic interactions, except for the limiting long-range coulombic interaction, which is partially taken into account through the second term in Eq. 2. It is expected, therefore, that the present approach would be more reasonable for nonelectrolyte solutes. Wood and coworkers<sup>11,12)</sup> have developed a method to assign pairwise group-group interaction parameters for enthalpies and chemical potentials of nonelectrolytes in aqueous solutions. The basic assumptions in our previous work<sup>1)</sup> (the assumptions b and c in this introduction) are essentially the same as theirs. Whether or not the approach presented here is reasonable would depend on the relative magnitudes of two contributions: from short-range pairwise interactions and from the coulombic interactions. It seems that the short-range interactions become relatively more important as ion size increases. In this respect, the result obtained by Visser et al. 13) should be noted; they applied Savage and Wood's concept to several tetraalkylammonium bromides in aqueous solutions and found that values of the functional group interaction parameters(enthalpy) for both nonelectrolytes and electrolytes are in reasonable agreement.

We believe that the present results support the simple assumptions made in the previous work for interpreting the  $B_{\rm v}$  coefficients found experimentally for the phosphonium halides in aqueous solutions, and that the present approach can be an empirical way to test the validity of the simple additivity rule assumed for splitting the pairwise interaction parameters for enthalpy and free energy as well as volume into contributions from group-group interactions.

## References

1) T. Wakabayashi and K. Takaizumi, *J. Soluiion Chem.*, **11**, 565 (1982).

- 2) H. L. Friedman and C. V. Krishnan, "Thermodynamics of Ion Hydration," in "Water: A Comprehensive Treatise," ed by F. Franks, Plenum Press, New York (1973), Vol. 3, Chap. 1, pp. 1—118.
- 3) K. Takaizumi and T. Wakabayashi, J. Solution Chem., 9, 809 (1980).
- 4) O. Redlich and D. M. Meyer, Chem. Rev., 64, 221 (1964).
- 5) W. Y. Wen and S. Saito, J. Phys. Chem., **68**, 2639 (1964); **69**, 3569 (1965).
- 6) W. Y. Wen and K. Nara, J. Phys. Chem., 71, 3907 (1967).
- 7) H. L. Friedman and P. S. Ramanathan, J. Phys. Chem., 74, 3756 (1970); P. S. Ramanathan and H. L. Friedman, J. Chem. Phys., 54, 1086 (1971).
- 8) P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman, J. Solution Chem., 1, 237 (1972).
  - 9) W. Y. Wen, J. Solution Chem., 2, 253 (1973).
- 10) W. H. Streng and W. Y. Wen, J. Solution Chem., 3, 865 (1974).
- 11) J. J. Savage and R. H. Wood, J. Solution Chem., 5, 733 (1976).
- 12) T. R. Tasker and R. H. Wood, J. Phys. Chem., 86, 4040 (1982); and references cited therein.
- 13) C. de Visser, W. J. Heuvelsland, and G. Somsen, J. Solution Chem., 7, 193 (1978).
- 14) The  $B_{\rm v}$  values for Ph<sub>4</sub>PCl were taken from Ref. 1: -2.48, -3.05, -3.54, -5.77, and -6.98 cm<sup>3</sup> mol<sup>-2</sup> dm<sup>3</sup> at 1, 5, 10, 25, and 40 °C, respectively.
- 15) The partial molar volume of 1:1 salt can be expressed

$$\overline{V}_2 = \phi_{\rm v}^{\rm o} + \frac{3}{2} A_{\rm v} c^{1/2} + B_{2{\rm v}} c + B_{3{\rm v}} c^2 + B_{4{\rm v}} c^3 + \cdots.$$
 (A)

Converting the  $\phi_{\mathbf{v}}$  to  $\overline{V}_2$  by the usual way, we can determine the coefficients  $B_{2\mathbf{v}}$ ,  $B_{3\mathbf{v}}$ , etc. For all the present salts, the  $B_{2\mathbf{v}}$  values agreed well with the  $B_{\mathbf{v}}$  values times 2 within about 0.3%. The agreement is what is expected. Using the coefficients for  $\phi_{\mathbf{v}}$  (Eq. 2), we obtain the expression for  $\overline{V}_2$  as a polynomial in  $c^{1/2}$ :

$$\overline{V}_2 = \phi_{\Upsilon}^{\circ} + \frac{3}{2} A_{\Upsilon} c^{1/2} + 2B_{\Upsilon} c + [-A_{\Upsilon} \phi_{\Upsilon}^{\circ}/2000] c^{3/2} + []c^2 + \cdots$$

The  $c^{3/2}$  term is negligible, *i.e.*,  $ca.~0.3~\rm cm^3~mol^{-1}$  even at 1 mol dm<sup>-3</sup>. Hence  $B_{2v}$  in Eq. A is very close to  $2B_v$ .

- 16) T. L. Broadwater and D. F. Evans, J. Phys. Chem., **73**, 164 (1969).
- 17) The pair correlation function  $g_{ij}$  is determined by the free energy of pairwise interaction between i and j. The Gurney potential for, say, butyl-butyl overlapping may differ considerably from those for other overlappings, and hence the relative probability to find a cation pair is not proportional to the concentration product  $(e_ie_j)$  only, even if other potentials are assumed to be the same. However, the same assumption as used in this work has usually been made in empirical approaches, <sup>11-13</sup>) and may be a permissible one in view of the present stage of theory.
- 18) T. Wakabayashi and K. Takaizumi, *Bull. Chem. Soc. Jpn.*, **56**, 1749 (1983).